Instruction Manual ## **IMP + (FIFTH EDITION REV 3)** January 2022 Part Number M-080-0-005-3P #### **COPYRIGHT** © Pulsar Measurement, 2005-22. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form without the written permission of Pulsar Process Measurement Limited. #### WARRANTY AND LIABILITY Pulsar Process Measurement Limited guarantee for a period of 2 years from the date of delivery that it will either exchange or repair any part of this product returned to Pulsar Process Measurement Limited if it is found to be defective in material or workmanship, subject to the defect not being due to unfair wear and tear, misuse, modification or alteration, accident, misapplication, or negligence. #### DISCLAIMER Pulsar Measurement neither gives nor implies any process guarantee for this product and shall have no liability in respect of any loss, injury or damage whatsoever arising out of the application or use of any product or circuit described herein. Every effort has been made to ensure accuracy of this documentation, but Pulsar Measurement cannot be held liable for any errors. Pulsar Measurement operates a policy of constant development and improvement and reserves the right to amend technical details, as necessary. The IMP+ shown on the cover of this manual is used for illustrative purposes only and may not be representative of the actual IMP+ supplied. #### CONTACT For technical support, please contact: Europe: <u>supporteurope@pulsarmeasurement.com</u> Outside Europe: <u>supportnorthamerica@pulsarmeasurement.com</u> If you have any comments or suggestions about this product, please contact: Europe: <u>europe@pulsarmeasurement.com</u> Outside Europe: northamerica@pulsarmeasurement.com Pulsar Measurement website: www.pulsarmeasurement.com | United States | Canada | United Kingdom | |--------------------------|----------------------|---------------------------| | 11451 Belcher Road South | 16456 Sixsmith Drive | Cardinal Building, Enigma | | Largo, | Long Sault, Ont. | Commercial Centre | | FL 33773 | K0C 1P0 | Sandy's Road, Malvern | | 888-473-9546 | 855-300-9151 | WR14 1JJ | | | | 00 44 (0)1684 891371 | ## **CONTENTS** | Chapter 1: Start Here | 5 | |--|----| | About this Manual | 5 | | About the IMP+ | 6 | | Product Specification | 7 | | EU Declaration of Conformity | 9 | | Chapter 2 Installation | 10 | | Unpacking | 10 | | Power Supply Requirements | 10 | | Dimensions | 11 | | Cable Entry | 14 | | Terminal Connections | 15 | | Preparation for Operation | 17 | | Maintenance | 17 | | Chapter 3 How To Use Your IMP+ | 18 | | Operating the Controls | 18 | | Using the Menu System | 20 | | Parameter Defaults | 21 | | Chapter 4 Getting Results From Your IMP Lite | 22 | | Setting up Your Application | 22 | | Using the 4-20 mA Output | 22 | | Using the Relays | 23 | | Alarm Relay Set-up | 24 | | Control Relay Set-up | 25 | | Loss of Echo Set-up | 26 | | Setting Security Passcodes | 26 | | Resetting Factory Defaults | 27 | | Checking the Information Specific to your IMP+ | 27 | | Using the RS232 Serial Interface | 28 | | Chapter 5 Parameter Listing and Descriptions | 29 | ## IMP+ INSTRUCTION MANUAL | Parameter Listing | 29 | |---------------------------|----| | Application (APP) Menu | 29 | | Relay (rL) Menu | 31 | | Volume (UoL) Menu | 34 | | Display (DiSP) Menu | 39 | | mA Output (LOOP) Menu | 40 | | Compensation (CoP) Menu | 41 | | P860 Sound Velocity | 42 | | Stability (StA) Menu | 43 | | System (SyS1) Menu | 43 | | Test (tESt) Menu | 44 | | Chapter 6 Troubleshooting | 45 | | Chapter 7 Disposal | 46 | | Transducers | 46 | | Controllers | 46 | #### CHAPTER 1: START HERE... Congratulations on your purchase of a Pulsar IMP+ Level Monitoring System. This quality system has been developed over many years and represents the latest in high technology ultrasonic level measurement and control. It has been designed to give you years of trouble-free performance, and a few minutes spent reading this operating manual will ensure that your installation is as simple as possible. #### **About this Manual** It is important that this manual is referred to for correct installation and **operation.** There are various parts of the manual that offer additional help or information as shown #### Tips TIP: Look for this icon throughout your Pulsar Measurement manual to find helpful information and answers to frequently asked questions. # **Additional Information** #### **Additional Information** At various parts of the manual, you will find sections like this that explain specific things in more detail. #### About the IMP+ # Functional Description The IMP+ level monitoring system is a highly developed ultrasonic level measurement system which provides non-contacting level measurement for a wide variety of applications in both liquids and solids. Its unique design allows for both 3 wire and 2 wire (loop powered) configuration all within the same unit Easy calibration and maintenance free "fit and forget" performance mean that you can install the IMP+ Level Monitoring System rapidly and with confidence. Two relays which can be configured for either alarm or control functions, with fully programmable setpoints are provided when connected as a 3-wire device, together with fault condition being indicated by the mA output on both the 2 and 3 wire mode. The IMP+ operates on the principle of timing the echo received from a measured pulse of sound transmitted in air and utilises "state of the art" echo extraction technology. The IMP+ comes in three models: IMP 3 with a range from 0.20m (0.66 feet) to 3.00m (9.84 feet), IMP 6 with a range of 0.3m (0.98 feet) to 6.00m (19.69 feet) and IMP 10 with a range of 0.3m (0.98 feet) to 10.00m (32.81 feet). The IMP+ can show **level**, **space**, **distance**, on the display. The relays can be programmed to give an 'ON' and 'OFF' point for external control. There is a 4-20 mA output (non-isolated in 3 wire mode) that can be connected to a remote chart recorder or PLC, to monitor level, space or distance, dependant on the measurement mode selected, and provides a 'fault condition' alarm of either 3.5mA or 22mA. The IMP+ lid has an integral LCD display and 4 buttons which are used for programming purposes when in Program Mode and as hot keys providing additional information whilst in Run Mode. # **Product Specification** | <u> </u> | | |---|--| | PHYSICAL | | | Dimensions | O/A height186mm x O/A diameter 133mm (5.24" x 7.32") | | Mounting | 1.5" BSP/NPT (IMP3 and 6 models) 2" BSP/NPT (IMP10) | | Weight | Nominal 1 kg | | Cable entry detail | 2 off cable glands 4.5 – 10mm. (torque to 2NM) | | ENVIRONMENTAL | | | IP Rating (Wall) | IP67 | | Max. & min. temperature (Ambient) | -40°C to +65°C (-4°F to 149°F) | | Max. & min. temperature (Transducer) | -40°C to +80°C (-4°F to 176°F) | | CE Approval | See EU Declaration of Conformity | | PERFORMANCE | | | Beam angle (-3dB half power) | <10° inclusive | | Operating frequency | IMP 3 125kHz, IMP 6 75kHz, IMP 10 41kHz | | Range | IMP 3 0.2 – 3m (0.66 – 10ft) | | | IMP 6 0.3 – 6m (0.98 – 20ft) | | | IMP 10 0.3 – 10m (0.98 – 33ft) | | Accuracy | ± 0.25% or 6mm (0.24 inches) whichever is greater | | Resolution | ± 0.1% or 2mm (0.08inches) whichever is greater | | 4-20mA output | Resolution 5µA | | Temperature compensation | Via internal temperature sensor (± 0.5°C accuracy) | | Response time | Power up to stable reading = 10 seconds | | 2-wire configuration (isolated) | Passive 4-20mA output | | Current output | 3.5-22mA | | 3-wire configuration (non- | 0-10V analogue output. | | isolated) | Active and passive 4-20mA outputs. | | B | Backlit LCD display | | Power consumption with relays energised | <60mA (less 12mA/relay not energised) | | PROGRAMMING | | | PC Programming | Via RJ11 port to RS232 using IMP PC software | | On-board programming | Via 4 button keypad and a 4-digit LCD display | | | | ## **SUPPLY** Power supply 11 - 30V DC Pulsar Measurement operates a policy of constant development and improvement and reserve the right to amend technical details, as necessary. # **EU DECLARATION OF CONFORMITY** # PULSAR Imp series This declaration of conformity is issued under the sole responsibility of the manufacturer Relevant directive(s) 2014/30/EU - EMC directive and its amending directives. 2014/35/EU - Low Voltage directive and its amending directives. 2011/65/EU - RoHS directive and its amending directives. Manufacturer's name Pulsar Process Measurement Ltd. Manufacturer's address Cardinal Building, Enigma Commercial Centre, Sandy's Road, Malvern, Worcestershire, WR14 1JJ, UK. Apparatus DC powered ultrasonic level measuring sensors. Models Pulsar Imp 3, 6, 10, Imp Lite 3, 6, 10. Type of equipment Measurement and process control. Standards applied EN 61010-1:2010+A1:2019 Safety requirements for electrical equipment for measurement, control and laboratory use. EN 61326-1:2013 EMC, equipment class industrial. I declare that the apparatus named above has been tested and complies with the relevant sections of the above referenced standards & directives. Signed for and on behalf of: Date: 7th April 2021. Rev. 3.4. Name & function: Tim Brown, electronics engineer. Pulsar Process Measurement Ltd. #### **CHAPTER 2 INSTALLATION** # **Unpacking** #### **Important Notice** All shipping cartons should be opened carefully. When using a box cutter, do not plunge the blade deeply into the box, as it could potentially cut or scratch equipment components. Carefully remove equipment from each carton, checking it against the packing list before discarding any packing material. If there is any shortage or obvious shipping damage to the
equipment, report it immediately to Pulsar Measurement. # **Power Supply Requirements** The IMP+ operates from a DC supply of 11 –30V and will typically draw less than 0.06A. The compact one-piece construction of the IMP+ can be mounted easily using the integral nose thread (1.5" or 2" BSP/ NPT, dependent on model). When choosing a location to mount the Imp, bear in mind the following: - For access to the LCD display and programming buttons it is recommended that you mount it in an area which is easily accessible. - The ultrasonic signal path should be free of falling material and obstructions such as pipes, beams etc. - The IMP 3 should be mounted at least 20cm (0.66 feet) above the maximum level of the material and be perpendicular to the surface. Whilst the IMP 6 and 10 should be mounted at least 30cm (0.98 feet) above the maximum level of the material and be perpendicular to the surface. - The ambient temperature is between -20°C and 65°C. - There should be no high voltage cables or electrical inverters close by. # **Important Notice** All electronic products are susceptible to electrostatic shock, so follow proper grounding procedures during installation. ## **Dimensions** The dimensions of the IMP+ are shown below: ## Outdoor and Open Vessel Installation The IMP+ can be simply mounted on a bracket, suitable for the application and secured using the thread located at the top of the transducer (2"BSP/NPT). Care should be taken to ensure that the IMP+ is not installed in direct sunlight, to avoid errors in the measurement of ambient temperature. Attention should also be taken, when mounting the unit, to ensure that strong windy conditions are avoided, wherever possible, to prevent abnormal operation. | IMP MODEL | RANGE | L = BLANKING | |-----------|--------------|--------------| | 1:4- 2 | 3 metres | 200mm | | Lite 3 | (9.84 feet) | (0.66 feet) | | Lita C | 6 metres | 300mm | | Lite 6 | (19.69 feet) | (0.98 feet) | | Lite 10 | 10 metres | 300mm | | | (32.18 feet) | (0.98 feet) | # "L" should as a minimum be at least that as detailed in the table above but can be greater if required. #### Closed Vessel Installation "L" should as a minimum be at least that as detailed in the table above but can be greater if required. The IMP+ can be simply screwed into a flange and secured using the thread located at the top of the transducer (1.5" or 2"BSP/ NPT, dependent on model). Where possible use a flange made of a synthetic material such as PVC, in cases where a metal flange is used it is advisable to fit a suitable gasket between the flange of the IMP+ and the connection to the vessel. ## Standpipe installations When mounting the IMP+ to a standpipe care should be taken to ensure that the standpipe is of sufficient diameter with reference to its length, see the table below for details: | DIA. (D) | | ANKING | |----------|-------------|---| | inches | mm | inches | | 3 | 220 | 8 | | 4 | 300 | 12 | | 6 | 420 | 16 | | 8 | 560 | 22 | | | 3
4
6 | inches mm 3 220 4 300 6 420 | When using a standpipe, fixed to the top of a vessel, ensure that the open end of the standpipe is clear of any obstructions such as weld seams, gaskets etc. to avoid unwanted signal returns. If using standpipes which extend into the vessel, beyond the blanking distance, but not as far as the empty level, then the open end of the standpipe should be cut to an angle of 45°. The maximum level (100% of Span), is inside the blanking distance Pipe should be free of obstructions such as weld seams Correct standpipe installation # **Important Notice** If the equipment is installed or used in a manner not specified in this manual, then the protection provided by the equipment may be impaired. ## **Cable Entry** The IMP Lite+ has two M16 cable entries, fitted with a suitable gland, to ensure moisture protection is maintained. #### Terminal Connection Details The IMP+'s unique design allows for both 3 wire and 2 wire (loop powered) configuration within the same unit the terminal connections for both configurations are as detailed below. Wiring details are also given on the terminals under the access cover. # 2 Wire (Loop Powered) 3 Wire Source mode - the **power** for the **loop** is **supplied** by the IMP+. #### **Terminal Connections** 2 Wire Terminal 1 + ve: Direct Current (DC) input (11-30VDC) Terminal 2 - ve: Current Output (4-20mA) #### Loop Resistance For two wire operation, the maximum cable resistance allowable can be calculated from the graph below. For example, if an IMP+ were supplied from 24v connected as a 2-wire unit (4-20mA only), the maximum total cable resistance is 590 ohms, for a typical 77 ohm /km cable this would mean a maximum cable length of 590/77 = 7.6km, remember this total cable resistance, so this figure has to be divided by 2 to give 3.8km max distance. # Maximum cable resistance vs supply voltage for 2 wire mode. Maximum cable resistance vs supply voltage for 3 wire mode. 3 Wire Terminal 1: + ve Current Output (4 – 20mA SINK MODE) (NOT USED IN SOURCE MODE) Terminal 2: - ve ground (4-20mA SINK MODE) Terminal 3: - ve: Direct Current (DC) input (11-30VDC) Terminal 4: + ve: Direct Current (DC) input (11-30VDC) Terminal 5: + ve Current Output (4 – 20mA SOURCE MODE) Terminal 6: + ve: 0-10V output (P842 = 1) or 0-5V output (P842 = 0) Terminal 7: - ve: 0-10V output (P842 = 1) or 0-5V output (P842 = 0) Terminal 8: Relay 1 Normally Open (N/C) Contact (De-energised) Terminal 9: Relay 1 Common Terminal 10: Relay 1 Normally Closed (N/O) Contact (De-energised) Terminal 11: Relay 2 Normally Open (N/C) Contact (De-energised) Terminal 12: Relay 2 Common Terminal 13: Relay 2 Normally Closed (N/O) Contact (De-energised) ## **Important Notice** If the equipment is installed or used in a manner not specified in this manual, then the protection provided by the equipment may be impaired. # **Preparation for Operation** Before switching on, check the following: - The IMP+ is mounted correctly. - The power supply is correctly installed. #### **Maintenance** There are no user serviceable parts inside your IMP Lite if you experience any problems with the unit, then please contact Pulsar Process Measurement for advice. To clean the equipment, wipe with a damp cloth. Do not use any solvents on the enclosure. ## **CHAPTER 3 HOW TO USE YOUR IMP+** ## **Operating the Controls** ## Display Whilst in the Run Mode, the 4-digit LCD, by default, will display the current level reading in metres, the display will also alternate between the reading and "LOE" when a fault condition (Loss of Echo) is detected. When in the Program Mode the display is used to read information on the Menu Options and the values entered. There are two operating modes for your IMP Lite, **Run Mode** and **Program Mode**. #### Run Mode This mode is used once the IMP+ has been set up in program mode. It is also the default mode that the unit reverts to when it resumes operation after a power failure. When the IMP+ is switched on for the first time, it will display, in P104 Measurement Units, the distance from the transducer face to the target. # Program Mode This mode is used to set up the IMP+ or change information already set, this is achieved by using the 4 push buttons located below the display. Entering a value for each of the menu options that are relevant to your application provides all the programming information. #### **Button Functions** There are 4 push buttons located under the display. Their name and functions are as follows: | BUTTON | RUN MODE | PROGRAM MODE | |------------------|--|---| | ESC
◀ | Displays details of unit
Serial No. and Software
Version | Used to Navigate out of the Menu System and return to Run Mode. Also used to Cancel a Parameter Value entered in error. | | UP
Å | Displays Current
Temperature | Used for Navigating around
Menu System and Increasing
Menu Option Values. | | DOWN
T | Displays Current Echo
Strength (dB's) | Used for Navigating around
Menu System and Decreasing
Menu Option Values. | | ENTER • | Displays current mA output | Used to confirm an action such as entering a Menu Option or Enter a Parameter Value. | # How to Access Program Mode To access the **Program mode**, press the "**ESC**" and "**Enter**" button simultaneously, where upon the display will show **PASS** on the LCD display briefly, to prompt you to enter the password, the display will now show **0000**, and the left-hand digit will flash. By using the UP and DOWN keys to increment or decrement the digit, and the ENTER key to shift the flashing digit to the next position. Assuming the passcode is the default 1997, you should then enter this. The ESC key can be used to go back to the previous digit. Finally, when you have selected all digits pressing the ENTER key again will input the selected pass code to the IMP Lite, if successful the display will show APP (Application). If, however you input the wrong pass code the IMP Lite LCD display will show Fail for 2 seconds and will revert to run mode. ## **Using the Menu System** The menu system has been designed to make the changing of parameters very simple. Once in the **Program Mode** the display will show a line of text that displays the menu system. Pressing the **Up** and **Down** buttons will scroll the display between the menu items, (as shown below, starting at APP). As you press the UP and DOWN buttons to scroll left and right between the menu options, you can press ENTER at any time to select a specific menu which will then take you to the parameters within the selected menu. Once you have reached the relevant menu, scroll through the parameters, and enter the necessary information. To enter the information, use
the UP and DOWN keys to increment or decrement the digit, and the ENTER key to shift the flashing digit to the next position, once you have completed entering the value required pressing the ENTER button again will save the value. When you have finished, press CANCEL to go back to the previous level. When you have reached the top level, then the IMP+ will ask for confirmation before allowing you to go back into run mode. This is done by pressing ENTER at the display prompt. #### **Parameter Defaults** Factory Defaults ## **Important Notice** When first installing the IMP+, or subsequently moving or using the unit on a new application, before proceeding to program the unit for its intended application it is recommended that you ensure that all parameters are at their default values by completing a Factory Defaults P930, as described in Chapter 5 Parameter Guide. When you first switch the IMP+ on, it will be reading the **distance** from the face of the transducer to the material surface. It will be indicating in P104 Measurement Units, as shown on the display In some applications, it is simplest to empty the vessel, take a reading from the Imp for distance. reading from the Imp for distance and then setup the empty level to this figure. Once you are satisfied with the installation, and the IMP+ is reading what you would expect in terms of distance from the face of the transducer to the material level, then you can proceed with programming, for the intended application. It is sensible to program all the required parameters at the same time. The system will be then set-up. Note The span is automatically calculated from the empty level, so the empty level should be entered first. #### **CHAPTER 4 GETTING RESULTS FROM YOUR IMP LITE** This chapter explains how to use the various functions of your IMP+. Where specific parameters are used, consult Parameter Guide in Chapter 5. ## **Setting up Your Application** **Empty Distance** **Empty Distance (P105)** is the distance from the face of the transducer to the material at the bottom of the vessel. Span **Span (P106)** is the distance from the empty level (0% full) to span (100% full). Near and Far Blanking **Near blanking (P107)** is the distance from the face of the transducer that the Imp will not record a level nearer than. A typical reason to increase this from the default value would be if you wish to ignore close in obstructions. **Far blanking** (**P108**) is the distance (as a percentage of empty level) beyond the empty level that the Imp will read, the default is plus 20% of empty level. If you wish to monitor further than the **empty level**, then increase this figure, so that the **empty level** plus the **far blanking** figure (as % of empty level) is greater than the surface being measured, within the capability of the transducer being used. # Using the 4-20 mA Output The mA output can be used to monitor remotely what the IMP+ is showing, so it can be displayed remotely, integrated into a PLC, or used to generate a record using a chart recorder or similar. By default, the IMP+ will provide a 4-20 mA output that represents what is displayed on the Imp, but these parameters can be overwritten as follows. For example, when **P100** = **2** (**Level**), the 4-20 mA will represent the empty level (4mA) and 100% of the operational span (20mA), but you may wish to only represent a section of the operational span. For example, the application may have an operational span of 6 metres, but you may only wish to represent empty level to 5 metres. If so, change **P834** (**Low Value**) to **0**, and **P835** (**High Value**) to **5.0**. If the device connected to the mA output is out of calibration, and cannot be calibrated, then the low and high current levels can be trimmed by altering **P838 (Low Trim)** and **P839 (High Trim)**. To do this, simply enter the value that ensures that 4 mA or 20 mA respectively are shown on the remote device. You can use the left/right menu keys to alter the value until the correct reading is shown on the remote device, rather than typing in a value. ## **Using the Relays** All relay related parameters are prefixed with a 2**. The second digit of the three-figure parameter number denotes the relay number as follows: 2 1* parameters for Relay 1 22* parameters for Relay 2 The third digit selects specific parameters for the setting up of the relays, which can be selected individually and results in the following parameter numbers for each relay. Relay 1 210 to 218 Relay 2 220 to 228 Each relay can be configured in any of the options shown below, and usually has two associated set-point values with it (e.g., level) for ON and OFF. # **Important Notice** When relays are programmed to act as Level Alarms relay setpoints are set in relation to the level of the material in the vessel, irrespective of the setting of the mode of operation (P100). You first need to decide which relays are to be used as alarms. The **first parameter** for each relay determines the **type of** the relay will be (i.e. **not in use, alarm** or **control.**), and what the further relay parameters, applicable to your selection, represent. Each of these types will now be described. There are three **types** that each relay, individually, can be set to, for example, consider **Relay 1**, you can select parameter **P210** from the following options: **0 = Not in Use** relay will remain in the de-energised condition. **1=Alarm**: relay will de-energise to set the alarm "ON". **2=Control** relay will energise to set the control "ON". #### **Alarm Relay Set-up** The alarm relays are de-energised to turn the alarms "ON" and energised to turn the alarms "OFF". In this way, loss of power will ensure that the alarm is activated. To set an **alarm** relay, set the **first parameter** for the relay to equal **1**. For example: Setting **Relay 1** for alarm purposes **P210 = 1** Setting **Relay 2** for alarm purposes **P220 = 1** The **second parameter** for each relay determines the **function** of the alarm relay, using the example of **Relay 1**, the **alarm function** can be selected from the options available in parameter **P211**. For full details of all available alarm options please refer to **P211, 221 Relay Function...** If **P210, 220 = 1(Alarm)** tables in Chapter 5. The **third parameter**, and the **fourth parameter** for each relay set the **Alarm** "**ON**" and "**OFF**" points. For a **high alarm** then set "**ON**" **higher than** "**OFF**". For **low alarm** then set "**ON**" **lower than** "**OFF**". Using the example of **Relay 1 P213** and **P214** set the "**ON**" and "**OFF**" points. For example, using Relay 1: | HIGH ALARM | LOW ALARM | |---------------------|---------------------| | P213 "ON" Setpoint | P213 "ON" Setpoint | | Higher than | Lower than | | P214 "OFF" Setpoint | P214 "OFF" Setpoint | #### **Control Relay Set-up** The control relays are energised to turn the control "ON" (start process function), and de-energised to turn the control "OFF" (stop process function). In this way, loss of power will ensure that the pumps are turned "OFF". To set a **control** relay, set the **first parameter** for the relay to equal 2. For example: Setting **Relay 1** for control purposes **P210 = 2** Setting **Relay 2** for control purposes **P220 = 2** The **second parameter** for each relay determines the **function** of the control relay, using the example of **Relay 1**, the **control function** can be selected from the options available in parameter **P211**. For full details of all available alarm options please refer to **P211, 221 Relay Function...** If **P210, 220 = 2(control)** tables in Chapter 5. The **third parameter** and **fourth parameter** are set to determine the switch points for the **control** relay. The **control** functions are started and stopped at the "**ON**" and "**OFF**" setpoints. To set a **control down** function (reduce level) then set "**ON**" **higher than** "**OFF**". To set a **control up** function (increase level) then set "**ON**" **lower than** "**OFF**". For example, using Relay 1 | HIGH ALARM | LOW ALARM | |---------------------|---------------------| | P213 "ON" Setpoint | P213 "ON" Setpoint | | Higher than | Lower than | | P214 "OFF" Setpoint | P214 "OFF" Setpoint | #### Loss of Echo Set-up When a relay is assigned to Loss of Echo (LOE) or fault condition, it will be set as an alarm relay which will be de-energised to turn the alarm (LOE) "ON" and energise to turn the alarm (LOE) "OFF". In this way, loss of power will ensure that the alarm is activated. To set a **LOE alarm** relay, set the **first parameter** for the relay to equal **1** and set the second parameter to 4 Example: Setting **Relay 1** for LOE Alarm purposes, set **P210** to **1** and then set **P211** to **4**. When a relay is assigned to LOE no further parameters are required. ## **Setting Security Passcodes** A passcode is used to switch the IMP+ from **Run Mode** into **Program Mode**. You can set a new passcode to prevent anyone changing any of your settings within your IMP+. The default **passcode** is **1997**, but this may be changed as follows. ## **Important Notice** The passcode is also used for remote access using the RS232, so if this is being used, be sure to ensure any additional equipment using this feature is changed accordingly. # Using A Passcode If you do not want to use a passcode, you can disable it as follows. First, enter **Program Mode** and go to the **SyS1** (System) menu. Select **P921** which is the **passcode enable** parameter. As shown on the display, setting the passcode enable to '0' will **disable** it, or '1' will **enable** the use of passcode. # **Important Notice** If the use of a passcode has been disabled, then you can move straight into Program Mode from Run Mode by pressing the ESC and ENTER button simultaneously. ## Changing the Passcode You can set the **passcode** to any number from 0000 to 9999. To do
this, enter **Program Mode** and go to **SyS1** (System) menu. Select **P922** which is the **Passcode** parameter which can be changed as required. ## **Resetting Factory Defaults** If you need to restore parameters to their original factory settings, then enter **Program Mode** go to the **SyS1** (System) menu and **ENTER**. Using the UP and DOWN buttons, go to parameter **P930**, and **ENTER**, **P930** is the factory defaults parameter, change the value to **1** and **ENTER**, all parameters, with the exception of the mA trims, will be restored to the factory settings (including the DATEM trace) and on completion 'Stor' (Store) will be displayed after which you can ESC out of this parameter and continue programming the IMP Lite for the required application. ## Checking the Information Specific to your IMP+ There are some parameters dedicated to each individual IMP+, such as the software revision and the unit's serial number. Checking the Software Revision and Serial Number If you need to identify the serial number of the unit or the current level of software in your IMP+, whilst in **Run Mode** press the **ESC** button and the serial number along with the software revision will be displayed. Alternatively enter **Program Mode** and select **SyS1** (System) menu and **ENTER**. Select parameter **P926** to view the identity of the current software **revision** or **P928** for the **serial number** of the unit. # **Using the RS232 Serial Interface** The RS232 serial interface is used to communicate between the IMP+, and a PC using the optional Pulsar IMP PC software, this software is used to obtain information from the IMP+ so that echo traces can be viewed, parameters can be uploaded, downloaded, and saved. To do so, the settings for communications control are set as follows and cannot be changed: **baud rate 19,200**, **8 data bits**, **no parity**, **1 stop bits**. Connection between the IMP+ and the PC is made via RJ11 connector located under the lid of the IMP+. ## **Important Notice** When connecting to the RS232 (RJ11) port this will cause the IMP+ to draw 20mA, this is necessary to ensure correct operation of the RS232. ## **CHAPTER 5 PARAMETER LISTING AND DESCRIPTIONS** # **Parameter Listing** This chapter describes all the parameters contained within the IMP+. # Application (APP) Menu # P100 Mode of Operation This parameter sets the mode of operation, when in run mode, and can be set to one of the following: | OPTION | DESCRIPTION | |------------------------|---| | 1 = Distance (Default) | Display shows the distance from the transducer face to the surface. | | 2 = Level | Display shows how full the vessel is | | 3 = Space | Display shows how empty a vessel is | | 4 = Volume | Display shows volume of material in the vessel. | #### P104 Measurement Units This parameter sets the units you want to use for programming and display | OPTION | DESCRIPTION | |----------------------|---| | 1 = metres (Default) | All units of measure are in METRES | | 2 = cm | All units of measure are CENTIMETRES | | 3 = mm | All units of measure are in MILLIMETRES | | 4 = feet | All units of measure are in FEET | | 5 = inches | All units of measure are in INCHES | # P105 Empty Distance This parameter is to be set to the maximum distance from the face of the transducer to the empty point, in **P104 Measurement Units**. Note this value affects span as well, so should be set before span. **Default: IMP 3 = 3.00m** (9.84 feet), IMP 6 = 6.00m (19.69 feet) and IMP 10 = 10.00m (32.81 feet). # P106 Span This parameter should be set to the maximum distance from the **Empty Level** (**P105**) to the maximum material level. It is automatically set to be equal to the **Empty Level** (**P105**) less the **Near Blanking** distance (**P107**) when you set the empty level. **Default IMP 3 = 2.80m (9.19 feet), IMP 6 = 5.70m (18.70 feet)** and **IMP 10 = 9.70m (31.82 feet).** ### P107 Near Blanking Distance This parameter is the distance from the face of the transducer that is not measurable and is pre-set to the minimum value dependant on the version of IMP+ being used. It should not be set to less than this figure but can be increased. | OPTION | DESCRIPTION | |---------------|--| | Lite 3 metre | Default Blanking Distance = 0.2m (0.66 feet) | | Lite 6 metre | Default Blanking Distance = 0.3m (0.98 feet) | | Lite 10 metre | Default Blanking Distance = 0.3m (0.98 feet) | #### P108 Far Blanking Distance This is the distance (as a **percentage** of empty level) beyond the empty point that the unit will be able to measure, and the **default** is pre-set to **10%** of the empty level. If the surface being monitored can extend beyond the **Empty Level** (**P105**) then the far blanking distance can be increased to a maximum of 100% of empty level. This parameter is always entered as a % of empty level. # Relay (rL) Menu P210 (Relay 1), P220 (Relay 2) - Relay Type This parameter defines what type each relay should be, see the table below for available options. | OPTION | DESCRIPTION | |--------------------------|---| | 0 = Not in Use (Default) | Relay not programmed | | 1 = Alarm | Relay is programmed as an alarm relay, which will de-energise ON, and energise OFF. This will ensure an alarm is raised if the power fails to the unit. | | 2 = Control | Relay is programmed as a control relay, which will energise ON, and de-energise OFF. | #### **Alarms** # P210 (Relay 1), P20 (Relay 2) = 1 (Alarm) P211 (RL1), P221 (RL2) - Relay Function | OPTION | DESCRIPTION | |-------------------|---| | 0 = Off (Default) | Relay will not operate | | 1 = Level | Alarm is based on the level in the vessel, and the type of level alarm (P212, 222) and two setpoints must be set (P213, 223 & P214, 224). Setpoints are entered in Display Units or % of span as referenced to Empty Level *. | | 4 = Loss of Echo | Alarm is raised if the Failsafe Timer (P809) expires. No setpoints are required | ## P213 (Relay 1), P223 (Relay 2) - Relay "ON" Setpoint This parameter determines the "ON" point for the alarm and should be set as follows, in **Measurement Units P104** | HIGH ALARM | LOW ALARM | |--------------------------|--------------------------------| | P213/P223 "ON" Setpoint | P213/P223 "ON" Setpoint | | Higher than | Lower than | | P214/P214 "OFF" Setpoint | P214/P224 "OFF" Setpoint | # P214 (Relay 1), P224 (Relay 2) - Relay "OFF" Setpoint This parameter determines the "OFF" point for the alarm and should be set as follows, in **Measurement Units P104** | HIGH ALARM | LOW ALARM | |--------------------------|--------------------------| | P214/P224 "OFF" Setpoint | P213/P223 "OFF" Setpoint | | Lower than | Higher than | | P214 "OFF" Setpoint | P214 "OFF" Setpoint | LOE (Loss Of Echo)) No setpoints are required when relays are used as LOE (Loss Of Echo) Control # P210 (Relay 1), P220 (Relay 2) =2 (Control) P211 (Relay 1), P221 (Relay 2) - Relay Function This parameter defines whether the **general control** relay function is currently "ON" or "OFF". | OPTION | DESCRIPTION | |-------------------|---| | 0 = Off (Default) | Relay will not operate | | 1 = On | Control is based on the level in the vessel. All general controls are used to assist each other (run at the same time) and each general control has its own "ON" and "OFF" setpoints. | # P213 (Relay 1), P223 (Relay 2) - Relay "ON" Setpoint This parameter determines the "ON" point for the control relay and should be set as follows, in **Measurement Units P104** | CONTROL DOWN | CONTROL UP | |--------------------------|--------------------------| | P213/P223 "ON" Setpoint | P213/P223 "ON" Setpoint | | Higher than | Lower than | | P214/P214 "OFF" Setpoint | P214/P224 "OFF" Setpoint | # P214 (Relay 1), P224 (Relay 2) - Relay "OFF" Setpoint This parameter determines the "**OFF**" point for the control relay and should be set as follows, in **Measurement Units P104** | CONTROL DOWN | CONTROL UP | |--------------------------|--------------------------| | P214/P224 "OFF" Setpoint | P213/P223 "OFF" Setpoint | | Lower than | Higher than | | P214 "OFF" Setpoint | P214 "OFF" Setpoint | # Volume (UoL) Menu # P600 Vessel Shape This parameter determines which vessel shape is used when utilising "Volume Conversion". The choices are as shown in the table below, along with the **dimensions** that are required to be entered (**P601-P603**). | VESSEL SHAPE | P600 VALUE DESCRIPTION | DIMENSIONS | |--------------|--|--| | | P600 = 0 (Default)
Cylindrical Flat Base | Cylinder diameter | | | P600 = 1 Rectangular Flat
Base | Width and Breadth | | | P600 = 2 Cylindrical Cone
Base | Cylinder diameter
and height of
bottom | | <u></u> | P600 = 3 Rectangular Flat
Base | Width and Breadth | | VESSEL SHAPE | P600 VALUE DESCRIPTION | DIMENSIONS | |--------------|--|--| | <u>‡</u> | P600 = 4 Parabola Base | Cylinder diameter
and height of
bottom | | | P600 = 5 Flat Sloped Base | Cylinder diameter | | | P600 = 6 Flat Sloped Base | Cylinder diameter
and height of
bottom | | <u>‡</u>
 P600 = 7 Rectangular flat
sloped base | Width and breadth
of rectangular
section and height
of bottom | | | P600 = 8 Horizontal cylinder
with flat ends | Cylinder diameter and tank length | | | P600 = 9 Horizontal cylinder with parabolic ends | Cylinder diameter,
length of one end
and section, and
tank length | | VESSEL SHAPE | P600 VALUE
DESCRIPTION | DIMENSIONS | |--|-----------------------------|--| | | P600 = 10 Sphere | Sphere diameter | | New Property of the Control C | *P600 = 11 Universal linear | No dimensions required as level, and volume breakpoints are used | | Nolume | *P600 =12 Universal curved | No dimensions
required as level,
and volume
breakpoints are
used | ^{*}P600 = 11 or 12 can be programmed by IMP PC only. For further assistance please contact your local Pulsar distributor. #### P601-P603 Vessel Dimensions These three parameters are used to enter the dimension required to calculate the volume. The dimensions required are as shown below and are entered **Measurements Units** (**P104**). | VESSEL SHAPE | P601 | P602 | P603 | |---|----------------------|----------------------|----------------------| | P600 = 0
Cylindrical flat base | Cylinder
Diameter | Not required | Not required | | P600 = 1
Rectangular flat base | Not required | Width of rectangle | Breadth of rectangle | | P600 = 2
Cylindrical cone base | Height of base | Width of rectangle | Not required | | P600 =3
Rectangular pyramid base | Height of base | Width of rectangle | Breadth of rectangle | | P600 = 4
Cylindrical parabola base | Height of base | Cylinder
diameter | Not required | | P600 = 5
Cylindrical half sphere base | Cylinder
diameter | Not required | Not required | | P600 = 6
Cylindrical flat sloped base | Height of base | Cylinder
diameter | Not required | | P600 = 7
Rectangular flat sloped base | Height of base | Width of rectangle | Breadth of rectangle | | P600 = 8
Horizontal cylinder flat ends | Length of cylinder | Cylinder
diameter | Not required | | P600 = 9
Horizontal cylinder parabolic
ends | Length of cylinder | Cylinder
diameter | Length of one end | | P600 = 10
Sphere | Sphere
diameter | Not required | Not required | #### P604 Calculated Volume This parameter displays the maximum volume that has been calculated by the IMP Lite and is a Read Only parameter. The volume displayed will be shown in cubic meters and is the total volume available between **empty level** (P105) and 100% of **span** (P106). #### P605 Volume Units This parameter determines the units that you wish to display, for volume conversion. It is used in conjunction with **P607** (**maximum volume**), and the units are shown on the display (subject to P810). The choices are: | OPTION | DESCRIPTION | |----------------------------|--| | 0 = No units | Volume will be totalised with no units | | 1 = Tons | Volume will be totalised in Tons | | 2 = Tonnes | Volume will be totalised in Tonnes | | 3 = Cubic metres (Default) | Volume will be totalised in Cubic metres | | 4 = Litres | Volume will be totalised in Litres | | 5 = UK Gallons | Volume will be totalised in UK Gallons | | 6 = US Gallons | Volume will be totalised in US Gallons | | 7 = Cubic Feet | Volume will be totalised in Cubic Feet | | 8 = Barrels | Volume will be totalised in Barrels | | 9 = lbs (pounds) | Volume will be totalised in lbs (pounds) | #### P606 Correction Factor This parameter is used to enter a correction factor, when required, such as the specific gravity of the material so that the volume calculated is relative to the actual amount of material that can be contained between **empty level** (**P105**) and 100% of **span** (**P106**). **Default = 1** #### P607 Max Volume This parameter displays the actual maximum volume that has been calculated by the IMP+, i.e., **P604 Calculated Volume x P606 Correction Factor**, and is a Read Only parameter. The volume displayed will be shown in **P605 Volume Units** and is the total volume available between **empty level** (**P105**) and 100% of **span** (**P106**). ## Display (DiSP) Menu # P800 Display Units This parameter determines whether the reading displayed is in **Measurement Units** (P104), or as a percentage of span. | OPTION | DESCRIPTION | |------------------------|--| | 1 = Measured (Default) | Display in Measurement Units (P104) | | 2 = Percentage | Display is in Percentage of span | #### P801 Decimal Places This parameter determines the number of decimal places on the reading during run mode. Minimum = 0 (No decimal places), Maximum 3 = (3 decimal Places) #### Default = 2 #### P808 Fail-safe Mode By default, if a fail-safe condition occurs, then the display, relays and the mA output are held at their last **known** values until a valid reading is obtained. If required, then you can change this so that the unit goes to **high** (100% of span), or **low** (empty) as follows: | OPTION | DESCRIPTION | |---------------------|---| | 1 = Known (Default) | Remain at the last known value | | 2 = High | Will fail to the high value (100% of span) | | 3 = Low | Will fail to the low value (empty) | # P809 Fail-safe Time In the event of a fail-safe condition occurring the fail-safe timer determines the time before fail-safe mode is activated. **Default = 2.00 mins** If the timer activates, the unit goes into **fail-safe**, as determined by **P808**, (**Display** and **P840** (**mA Output**). When this happens, you will see the message "**LOE**!" on the display. When a valid measurement is obtained then the display, relays and mA output will be restored and the timer is reset. #### mA Output (LOOP) Menu #### P834 mA Low Level This parameter sets, in **Measurement Units (P104)**, the value of 'level', 'distance' or 'space', depending on the selected **Mode of Operation (P100)**, at which 4mA will occur. ## P835 mA High Level This parameter sets, in **Measurement Units (P104)**, the value of 'level', 'distance' or 'space', depending on the selected **Mode of Operation (P100**), at which 20 mA output will occur. #### P838 mA Low Trim If the device you are connected to is not calibrated, and not showing the low value, then you can trim it using this parameter. You can either type in the offset directly or use the arrow keys to move the output up and down until you get the expected result on the device that is connected. #### P839 mA High Trim If the device you are connected to is not calibrated, and not showing the high value, then you can trim it using this parameter. You can either type in the offset directly or use the arrow keys to move the output up and down until you get the expected result on the device that is connected. # P840 mA Fail-safe Mode This parameter determines what happens to the mA output in the event of the unit going into fail-safe mode. The **default** is to do the same as the **system fail-safe** (**P808**), but this can be overridden to force the mA output to an independent fail-safe mode as follows: | OPTION | DESCRIPTION | |-------------|---| | 0 = Default | mA output will fail as per P808 . | | 1 = Hold | mA output will retain its last known value. | | 2 = Low | mA output will fail to its low condition. 3.5mA | | 3 = High | mA output will fail to its high condition. 22mA | ## P842 Voltage Output This parameter will determine the **range** of the **voltage output**. The voltage output will **automatically** be **scaled** to represent the
Span P106 where **Ovolts** represents 0% (**empty**) and maximum voltage **5** or **10 volts**, depending on range selected, will represent 100% (**full**). | OPTION | DESCRIPTION | |--------------|---| | 0 = 5 volts | Voltage output range will be 0 – 5 volts | | 1 = 10 volts | Voltage output range will be 0 – 10 volts | #### **Important Notice** In the event of a **failsafe** condition **occurring**, the **voltage output** will fail in accordance with the **Failsafe Mode P808** #### Compensation (CoP) Menu #### P851 Measurement Offset The value of this parameter is added to the measured distance, in **Measurement Units** (**P104**). This Offset will be added to the level, as derived from the transducer, and will affect everything including the reading on the display, the relay setpoints and the mA output. # P852 Temperature Source This parameter determines the source of the temperature measurement. By **default**, it is set to internal (transducer) (**P852=1**), which will automatically detect the temperature from the transducer. If for any reason, no temperature input is received, then the **Fixed Temp** value is used, as set by **P854**. The temperature source can be specifically set as follows: | OPTION | DESCRIPTION | |------------------------|--| | 1 = Internal (Default) | Always uses temperature reading from transducer. | | 3 = Fixed | Always uses fixed temperature (P854) | # P854 Fixed Temperature This parameter sets the temperature, in degrees centigrade to be used if **P852** (**Temperature Source**) = **3**. **Default** = **20°C** ## **P860 Sound Velocity** This option allows for the velocity of sound to be changed according to the atmosphere the transducer is operating in. By **default**, the velocity is set for **342.72m/sec** which is the speed of sound travelling in air at a temperature of **20°C**. The table below gives details of the velocity of sound in various gaseous atmospheres. In all cases the velocity indicated is that in a 100% gaseous atmosphere at 0°C. In atmospheres less than 100% it may be necessary to check the level indicated at near empty and near full and compare with the actual level, several times, then adjust the **Sound Velocity** accordingly to obtain an accurately displayed reading. | GAS | SOUND VELOCITY | |----------|----------------| | Chlorine | 206 m/sec | | Argon | 308 m/sec | | Oxygen | 316 m/sec | | Air | 331.5 m/sec | | Ammonia | 415 m/sec | | Methane | 430 m/sec | | Helium | 435 m/sec | | Neon | 965 m/sec | # P645 Vapour Temperature Compensation The sound velocity in air increases or decreases at a uniform rate of 60cm/sec. per °C, however in atmospheres other than air it will change at a different rate. This option allows the rate of change in cm/sec. per °C to be set according to the atmosphere and temperature present. The level indicated, should be compared with the actual level, several times, then **Vapour Temperature Compensation** adjusted accordingly, to obtain an accurately displayed reading. **Default = 60 cm/sec. per °C** ## Stability (StA) Menu Damping Damping is used to damp the display, to enable it to keep up with the process but ignore minor surface fluctuations. P870 Fill Damping This parameter determines the maximum rate at which the unit will respond to an increase in level. It should be set slightly higher than the maximum vessel fill rate. **Default = 10.000 metres/minute (32.81 feet/minute)** P871 Empty Damping This parameter determines the maximum rate at which the unit will respond to a decrease in level. It should be set slightly higher than the maximum vessel empty rate. **Default = 10.000 metres/minute (32.81 feet/minute)** # System (SyS1) Menu The following three parameters do not affect how the unit performs, but details, contained in them, may be required, by Pulsar, when making technical enquiries. P921 Enable Code **Enables** the passcode (**P922**), which means the passcode must be entered to go into program mode. If **disabled** (set to **0**), then no passcode is required, and pressing ESC and ENTER button simultaneously will allow entry into the program mode. P922 Passcode This is the passcode that must be used to enter program mode. The **default** is **1997**, but this can be changed to another value. P926 Software Revision This parameter will display the current software revision. P928 Serial Number This parameter will display the serial number of the unit. ## P930 Factory Defaults This parameter resets all parameter values to the original Factory Set values that were installed when the unit was tested before despatch to you. To **reset** parameters, enter **1** and press **ENTER**, all parameters, except for the mA trims, will be restored to the factory settings (including the DATEM trace) and on completion Stor (Store) will be displayed after which you can ESC out of this parameter and continue programming the IMP Lite for the required application. #### Test (tESt) Menu #### P991 Hard Test When this parameter is selected, the unit will test the following in turn. - Display. All the segments on the LCD and the backlight are lit up, so you can see if they all work. Press the ENTER button, to end the test. - Keys. You should press each button, to confirm it works, with a counter showing how many more buttons you must press. Press ESC last, as this will show if all keys were pressed or not. If they were not, then an error message is displayed. #### P992 mA Out Test This parameter will allow you to force a specified current on the mA output, to test the equipment that it is connected to, and to make sure the unit is working correctly. The figure you enter will be generated by the mA output. # **CHAPTER 6 TROUBLESHOOTING** This section describes many common symptoms, with suggestions as to what to do. | SYMPTOM | WHAT TO DO | |--|---| | Display blank, transducer not firing. | Check power supply | | Display shows LOE | No valid echo being received, and unit has gone into fault condition. Check material level is not out of range, sensor is perpendicular to material surface. | | Incorrect reading being displayed for current level | Measure actual distance from transducer face to surface of material. Enter Program Mode and access SyS1 menu, go to P21and press ENTER type in the measured distance, press ENTER, wait until "Stor" is displayed and return to Run Mode, display should now update to correct reading. | | Material level is consistently incorrect by the same amount. | Check empty level (P105) correctly entered. | #### **CHAPTER 7 DISPOSAL** Incorrect disposal can cause adverse effects to the environment. Dispose of the device components and packaging material in accordance with regional environmental regulations including regulations for electrical \ electronic products. #### **Transducers** Remove power, disconnect the Transducer, cut off the electrical cable and dispose of cable and Transducer in accordance with regional environmental regulations for electrical \ electronic products. #### **Controllers** Remove power, disconnect the Controller, and remove battery (if fitted). Dispose of Controller in accordance with regional environmental regulations for electrical \ electronic products. Dispose of batteries in accordance with regional environmental regulations for batteries. **EU WEEE Directive Logo** This symbol indicates the requirements of Directive 2012/19/EU regarding the treatment and disposal of waste from electric and electronic equipment. # www.pulsarmeasurement.com SUPPORT@PULSARMEASUREMENT.COM Copyright © 2020 Pulsar Measurement Ltd. Registered Address: 1 Chamberlain Square CS, Birmingham B3 3AX Registered No.: 3345604 England & Wales Rev 1.0